miércoles, 30 de mayo de 2018

TEORIA DE CONJUNTOS


Imagen relacionada

TEORÍA DE CONJUNTOS:
En matemáticas, un conjunto es una colección de elementos considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personasnúmeroscoloresletrasfiguras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido como incluido de algún modo dentro de él.
Ejemplo: el conjunto de los colores del arcoíris es:
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta}
Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo, para los números naturales, si se considera la propiedad de ser un número primo, el conjunto de los números primos es:
P = {2, 3, 5, 7, 11, 13, ...}
Un conjunto queda definido únicamente por sus miembros y por nada más. En particular, un conjunto puede escribirse como una lista de elementos, pero cambiar el orden de dicha lista o añadir elementos repetidos no define un conjunto nuevo. Por ejemplo:
S = {Lunes, Martes, Miércoles, Jueves, Viernes} = {Martes, Viernes, Jueves, Lunes, Miércoles}
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta} = {Amarillo, Naranja, Rojo, Verde, Violeta, Añil, Azul}
Los conjuntos pueden ser finitos o infinitos. El conjunto de los números naturales es infinito, pero el conjunto de los planetas en el Sistema Solar es finito (tiene ocho elementos). Además, los conjuntos pueden combinarse mediante operaciones, de manera similar a las operaciones con números.
Los conjuntos son un concepto primitivo, en el sentido de que no es posible definirlos en términos de nociones más elementales, por lo que su estudio puede realizarse de manera informal, apelando a la intuición y a la lógica. Por otro lado, son el concepto fundamental de la matemática: mediante ellos puede formularse el resto de objetos matemáticos, como los números y las funciones, entre otros. Su estudio detallado requiere pues la introducción de axiomas y conduce a la teoría de conjuntos.
https://es.wikipedia.org/wiki/Conjunto
Resultado de imagen para concepto de conjunto en matematicas

En las matemáticas, un conjunto B es subconjunto de un conjunto A si B «está contenido» dentro de ACuando A es un subconjunto de B, se denota como A ⊆ B y se dice que «A está contenido en B». También puede escribirse B ⊇ A, y de
cirse queB es un superconjunto de A y también «B contiene a A» o «B incluye aA».
Todo conjunto A es un subconjunto de sí mismo, ya que siempre se cumple que «cada elemento de A es a su vez un elemento de A».

Es habitual establecer una distinción más fina mediante el concepto de subconjunto propioA es un subconjunto propio de B si es un subconjunto de B pero no es igual a B. Se denota como A ⊊ B, es decir: A ⊆ B pero A ≠ B (y equivalentemente, para un superconjunto propio, B ⊋ A).



DEFINICION DE SISTEMA NUMERICO

SISTEMA DE NUMERICOS Se le llama sistema de numeración a un conjunto de símbolos y reglas que son utilizan para la representación de datos numéricos y cantidades. Estos se caracterizan por su base. Cuando hablamos de base nos referimos al número de símbolos distintos que un sistema numérico utiliza, aparte es el coeficiente el cual determina el valor de cada símbolo dependiendo de la posición que este ocupe. Ejemplos de sistemas numéricos: Decimal, binario, octal, hexadecimal.

En aritméticaálgebra y análisis matemático, un sistema numérico es un conjunto provisto de dos operaciones que verifican ciertas condiciones relacionadas con las propiedades conmutativaasociativa y distributiva. El conjunto de los números enteros, los racionales o los reales son ejemplos de sistemas numéricos, aunque los matemáticos han creado muchos otros sistemas numéricos más abstractos para diversos fines. Además debe tenerse en cuenta que dado un sistema numérico existen diversas formas de representarlo, por ejemplo en los enteros podemos usar la representación decimal, la binaria, la hexadecimal, etc. En los racionales podemos optar por representarlos de manera decimal o como fracción de enteros, etc.
Los sistemas numéricos se caracterizan por tener una estructura algebraica (monoideanillocuerpoálgebra sobre un cuerpo), satisfacer propiedades de orden (orden totalbuen orden) y propiedades topológicas y analíticas (densidadmetrizabilidadcompletitud) adicionales.     
https://es.wikipedia.org/wiki/Sistema_num%C3%A9rico


¿Qué es un sistema de numeración?

Un sistema de numeración define a un conjunto de signos y reglas para expresar a los números. A lo largo de la historia los seres humanos hemos inventado distintos sistemas de numeración. De ellos, el sistema de numeración romano y el sistema de numeración arábigo son, hoy por hoy, dos de los más utilizados.
http://www.carlospes.com/minidiccionario/sistema_de_numeracion.php


Resultado de imagen para DEFINICION DE SISTEMA NUMERICO